積層チップインダクタ MULTILAYER CHIP INDUCTORS LK SERIES

OPERATING TEMP. -40~85°C

特長 FEATURES

・磁気シールドタイプのため、クロストークの発生がなく、高密度実装に最適

- ・完全モノリシック構造のため、高い信頼性を実現
- ・世界最小のµHインダクタ(LK1005シリーズ)

- Internal printed coil structure creates a closed magnetic circuit which acts as a magnetic shield eliminating crosstalk, thus permitting higher mounting densities.
- Multilayer block structure yields higher reliability.
- The smallest µH inductors in the world (LK1005 series)

用途 APPLICATIONS

・小型化が要求される携帯機器等の一般回路

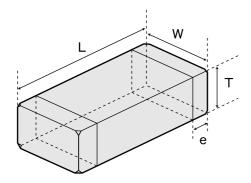
Any general circuit of portable equipment in which compact size and high mounting densities are required.

形名表記法 ORDERING CODE

1		3		4		6
形式		公称イン	ダクタンス [μH]	インダ	「クタンス許容差[%]	当社管理記号
LK 積層チ	ーップインダクタ	例		К	±10	△ 標準品
		47N	0.047	Μ	±20	△= スペース
2		R10	0.1			
2		1R0	1			
形状寸法(L>	(W)(mm)	100	10	5		
1005(0402)	1.0×0.5	*B=	小数点			
1608(0603)	1.6×0.8			包装		
2125(0805)	2.0×1.25			-T	リールテーピング	

Type LK Multilayer chip inductors

2					
External Dimensions (LXW)(mm)					
1005(0402)	1.0×0.5				
1608(0603)	1.6×0.8				
2125(0805)	2.0×1.25				


Nominal Inductance(µH)								
0.047								
0.1								
1								
10								
*R=decimal point *N=0.0(nH type)								

4						
Inductance Tolerances (%)						
К	±10					
М	±20					

6						
Interna	I code					
\bigtriangleup	Standard Products					
∠=Blank space						

外形寸法 EXTERNAL DIMENSIONS

Туре	L	W	Т	е
LK1005	1.00±0.05	$0.50 {\pm} 0.05$	0.50 ± 0.05	0.25±0.10
(0402)	(0.039±0.002)	(0.020±0.002)	(0.020 ± 0.002)	(0.010±0.004)
LK1608	1.6±0.15	0.8±0.15	0.8±0.15	0.3±0.2
(0603)	(0.063±0.006)	(0.031±0.006)	(0.031±0.006)	(0.012±0.008)
	2.0 ^{+0.3}		0.85±0.2	
LK2125	-0.1	1.25±0.2	1.25±0.2	0.5±0.3
(0805)	(0.079 + 0.012) - 0.004)	(0.049±0.008)	(0.033±0.008)	(0.020±0.012)
	0.004		(0.049±0.008)	

Unit: mm(inch)

概略バリエーション AVAILABLE INDUCTANCE RANGE

Type	LK1005	LK1608	LK2125
Range 0.047 0.068 0.082 0.10 0.12 0.15 0.18 0.22 0.27 0.33 0.39 0.47 0.56 0.82 0.047 0.56 0.82 000000000000000000000000000000000000	R12 Imax. [mA] R15 1 R18 25 R22 R33 R33 R39 R47 R56 R68 10 1R0 1R2 1R5 1R8 2R2 V	LK1608 47NM 68NM 82NM R10 R12 R15 50 R18 R22 R33 R390 R47 R56 35 R68 R82 1R0 1R2 25 1R5 1R8 2R2 2R7 3R3 15 3R3 15 3R9 4R7 5R6 6R8 882 100 120 150M 180M 220M 1 270M 330M	LK2125 Imax. (mA] 47NM 68NM 300 82NM R10 R12 R15 250 R18 R22 R27 R33 R39 200 R47 R56 R68 1R0 1R2 50 1R8 2R2 2R7 383 30 383 30 383 30 382 188 282 188 282 188 282 287 383 383 30 389 487 586 688 882 15 100 120 150M 180M

長 値 nples	Inductance	Imax [mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]
amp	0.1 <i>µ</i> H			50	0.50	250	0.30
€m	1 <i>μ</i> Η	10	1.10	25	0.60	50	0.40
	10µH			5	2.55	15	1.15

セレクションガイド Selection Guide アイテム一覧 Part Numbers

P.218

梱包 Packaging

P.258

使用上の注意 Precautions

P.268

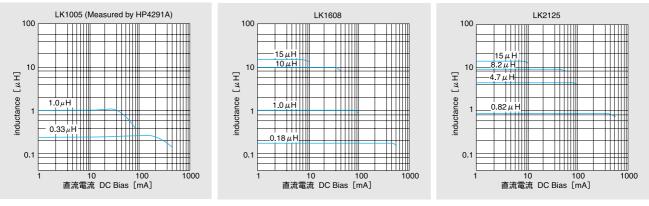
アイテム一覧 PART NUMBERS

LK1005 —

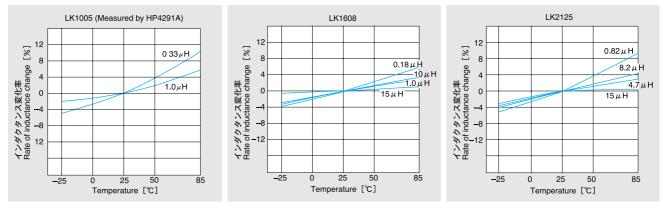
形名	公称 インダクタンス	インダクタンス 許容差	Q	自己共振周波数 Self resonant	直流抵抗 DC	定格電流 Rate current	測定周波数 Measuring	厚さ Thickness
Ordering code	Inductance [µH]	Inductance tolerance	(min.)	frequency [MHz] (min.)	Resistance [Ω](max.)	(mA) (max.)	frequency (MHz)	(inch)
LK 1005 R12	0.12		10	180	0.70	25	25	
LK 1005 R15	0.15		10	165	0.90	25	25	
LK 1005 R18	0.18		10	150	1.10	25	25	
LK 1005 R22	0.22	1	10	135	1.30	25	25]
LK 1005 R27	0.27		10	120	1.50	25	25	
LK 1005 R33	0.33		10	105	1.70	25	25	
LK 1005 R39	0.39		20	85	0.60	10	10	0.50±0.05
LK 1005 R47	0.47	±10%	20	80	0.70	10	10	
LK 1005 R56	0.56	±20%	20	75	0.80	10	10	(0.020±0.002)
LK 1005 R68	0.68		20	70	0.90	10	10	
LK 1005 R82	0.82		20	65	1.00	10	10	
LK 1005 1R0	1.0	1	20	60	1.10	10	10	
LK 1005 1R2	1.2		20	55	1.25	10	10	
LK 1005 1R5	1.5		20	50	1.40	10	10	
LK 1005 1R8	1.8]	20	45	1.55	10	10]
LK 1005 2R2	2.2]	20	40	1.70	10	10]

(注)形名の□にはインダクタンス許容差記号(MまたはK)がはいります。 ・□ Please specify the Inductance tolerance code (K or M).

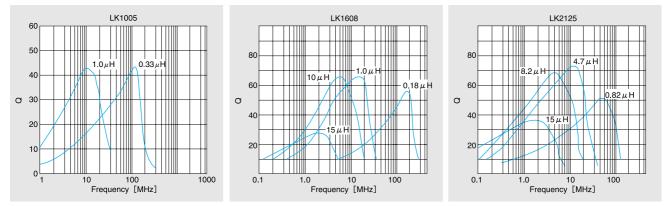
LK1608 —


形 名 Ordering code	公称 インダクタンス Inductance 〔µH〕	インダクタンス 許容差 Inductance tolerance	Q (min.)	自己共振周波数 Self resonant frequency [MHz] (min.)	直流抵抗 DC Resistance [Ω](max.)	定格電流 Rated current 〔mA〕 (max.)	測定周波数 Measuring frequency 〔MHz〕	厚さ Thickness 〔mm〕 (inch)
LK 1608 47NM	0.047		10	260	0.30	50	50	
LK 1608 68NM	0.068	±20%	10	250	0.30	50	50	
LK 1608 82NM	0.082	1	10	245	0.30	50	50	
LK 1608 R10	0.10		15	240	0.50	50	25	
LK 1608 R12	0.12	1	15	205	0.50	50	25	
LK 1608 R15	0.15	1	15	180	0.60	50	25	
LK 1608 R18	0.18	1	15	165	0.60	50	25	
LK 1608 R22	0.22	1	15	150	0.80	50	25	
LK 1608 R27	0.27	1	15	136	0.80	50	25	
LK 1608 R33	0.33	1	15	125	0.85	35	25	
LK 1608 R39	0.39	1	15	110	1.00	35	25	
LK 1608 R47	0.47	1	15	105	1.35	35	25	-
LK 1608 R56	0.56	1	15	95	1.55	35	25	
LK 1608 R68	0.68	1	15	80	1.70	35	25	0.8±0.15 (0.031±0.006)
LK 1608 R82	0.82	1	15	75	2.10	35	25	
LK 1608 1R0	1.0	±10%	35	70	0.60	25	10	
LK 1608 1R2	1.2	±20%	35	60	0.80	25	10	
LK 1608 1R5	1.5	1	35	55	0.80	25	10	
LK 1608 1R8	1.8	1	35	50	0.95	25	10	
LK 1608 2R2	2.2	1	35	45	1.15	15	10	
LK 1608 2R7	2.7	1	35	40	1.35	15	10	
LK 1608 3R3	3.3	1	35	38	1.55	15	10	1
LK 1608 3R9	3.9	1	35	36	1.70	15	10	
LK 1608 4R7	4.7	1	35	33	2.10	15	10	
LK 1608 5R6	5.6	1	35	22	1.55	5	4	
LK 1608 6R8	6.8	1	35	20	1.70	5	4	
LK 1608 8R2	8.2	1	35	18	2.10	5	4	
LK 1608 100	10		35	17	2.55	5	2	
LK 1608 120	12		35	15	2.75	5	2	1
LK 1608 150M	15		20	14	1.70	1	1	
LK 1608 180M	18	1	20	13	1.85	1	1	1
LK 1608 220M	22	±20%	20	11	2.10	1	1	1
LK 1608 270M	27	1	20	10	2.75	1	1	1
LK 1608 330M	33	1	20	9	2.95	1	1	1

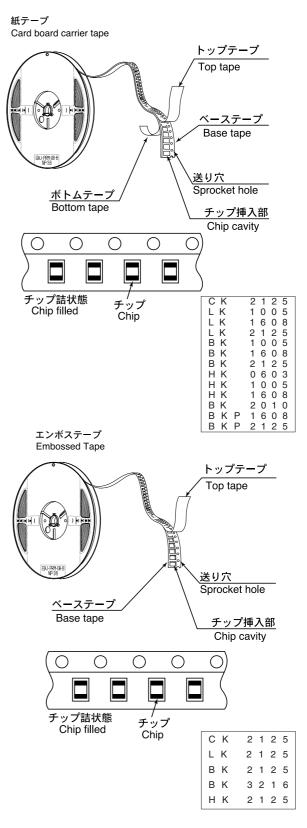
(注)形名の□にはインダクタンス許容差記号(MまたはK)がはいります。 ・□ Please specify the Inductance tolerance code (K or M).

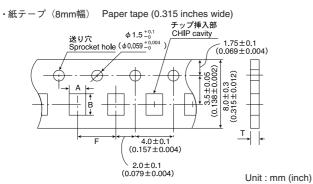

形 名 Ordering code	公称 インダクタンス Inductance 〔µH〕	インダクタンス 許容差 Inductance tolerance	Q (min.)	自己共振周波数 Self resonant frequency [MHz] (min.)	直流抵抗 DC Resistance [Ω](max.)	定格電流 Rated current 〔mA〕 (max.)	測定周波数 Measuring frequency 〔MHz〕	厚さ Thickness (mm) (inch)
LK 2125 47NM	0.047		15	320	0.20	300	50	
LK 2125 68NM	0.068	±20%	15	280	0.20	300	50	1
LK 2125 82NM	0.082		15	255	0.20	300	50	
LK 2125 R10	0.10		20	235	0.30	250	25	
LK 2125 R12	0.12		20	220	0.30	250	25	
LK 2125 R15	0.15		20	200	0.40	250	25	0.85±0.2
LK 2125 R18	0.18		20	185	0.40	250	25	(0.033±0.008
LK 2125 R22	0.22		20	170	0.50	250	25	
LK 2125 R27	0.27	1	20	150	0.50	250	25	
LK 2125 R33	0.33		20	145	0.55	250	25	
LK 2125 R39	0.39		25	135	0.65	200	25	1
LK 2125 R47	0.47		25	125	0.65	200	25	
LK 2125 R56	0.56		25	115	0.75	150	25	1.25±0.2
LK 2125 R68	0.68		25	105	0.80	150	25	(0.049±0.008
LK 2125 R82	0.82		25	100	1.00	150	25	
LK 2125 1R0	1.0	±10%	45	75	0.40	50	10	
LK 2125 1R2	1.2	±20%	45	65	0.50	50	10	1
LK 2125 1R5	1.5		45	60	0.50	50	10	0.85±0.2
LK 2125 1R8	1.8		45	55	0.60	50	10	(0.033±0.008
LK 2125 2R2	2.2		45	50	0.65	30	10	
LK 2125 2R7	2.7		45	45	0.75	30	10	
LK 2125 3R3	3.3		45	41	0.80	30	10	
LK 2125 3R9	3.9		45	38	0.90	30	10	
LK 2125 4R7	4.7	1	45	35	1.00	30	10	
LK 2125 5R6	5.6		50	32	0.90	15	4	
LK 2125 6R8	6.8		50	29	1.00	15	4	
LK 2125 8R2	8.2		50	26	1.10	15	4	1.25±0.2
LK 2125 100	10		50	24	1.15	15	2	(0.049±0.008
LK 2125 120	12		50	22	1.25	15	2	
LK 2125 150M	15		30	19	0.80	5	1]
LK 2125 180M	18		30	18	0.90	5	1]
LK 2125 220M	22	±20%	30	16	1.10	5	1]
LK 2125 270M	27		30	14	1.15	5	1]
LK 2125 330M	33		30	13	1.25	5	0.4	

(注)形名の□にはインダクタンス許容差記号(MまたはK)がはいります。 ・□ Please specify the Inductance tolerance code (K or M).



温度特性例 Temperature characteristics(Measured by HP4275A)

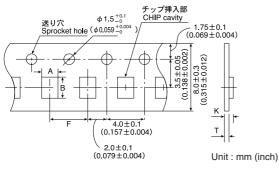

Q-周波数特性例 Q-vs-Frequency characteristics(Measured by HP4195A+41951A)

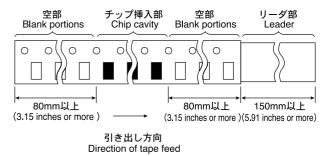

①標準数量 Standard Quantity ■テーピング梱包 Tape & Reel Packaging

	製品厚み	標準数量	E [pcs]	
形 式	Thickness		d Quantity	
Туре	[mm]	紙テープ	エンボステープ	
	(inch)	Paper Tape	Embossed Tape	
	0.85	4000		
	(0.033)	4000		
CK2125(0805)	1.25		2000	
	(0.049)		2000	
LK1005(0603)	0.5	10000	_	
21(1000(0000)	(0.020)	10000		
LK1608(0603)	0.8	4000	_	
EI(1000(0003)	(0.031)	4000		
	0.85	4000	_	
LK2125(0805)	(0.033)	4000		
	1.25		2000	
	(0.049)		2000	
HK0603(0201)	0.3	15000	_	
1110000(0201)	(0.012)	10000		
HK1005(0402)	0.5	10000	_	
11111000(0102)	(0.020)	10000		
HK1608(0603)	0.8	4000	_	
	(0.031)			
	0.85	_	4000	
HK2125(0805)	(0.033)			
1112120(0000)	1.0	_	3000	
	(0.039)			
BK1005(0402)	0.5	10000	_	
	(0.020)			
BK1608(0603)	0.8	4000	_	
,	(0.031)			
	0.85	4000	_	
BK2125(0805)	(0.033)			
2.12.120(0000)	1.25	_	2000	
	(0.049)			
BK2010(0804)	0.45	4000	_	
	(0.018)			
BK3216(1206)	0.8	_	4000	
	(0.031)		ļ	
BKP1608(0603)	0.8	4000	_	
. ,	(0.031)			
BKP2125(0805)	0.85	4000	_	
- () - /	(0.033)			

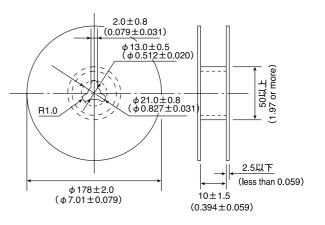
②テーピング材質 Taping material

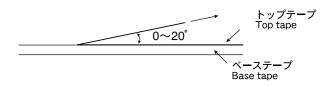



③テーピング寸法 Taping Dimensions


形式	製品厚み	チップ	挿入部	挿入ピッチ	テープ厚	₽みmax.
		Chip	cavity	Insertion Pitch	Tape Th	nickness
Туре	Chip Thickness	А	В	F	К	Т
CK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
012123(0003)	(0.049)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.079)	(0.012)
LK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
LIX2123(0003)	(0.049)	(0.059±0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.079)	(0.012)
	0.85				1.5	
HK2125(0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3
111/2123(0003)	1.0	(0.059 ± 0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)
	(0.039)				(0.079)	
BK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
DI(2120(0000)	(0.049)	(0.059 ± 0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
BK3216(1206)	0.8	1.9±0.1	3.5±0.1	4.0±0.1	1.4	0.3
DR0210(1200)	(0.031)	(0.075 ± 0.004)	(0.138±0.004)	(0.157±0.004)	(0.055)	(0.012)

形式	製品	チップ挿	入部	挿入ピッチ	テープ厚み
Type	厚み	Chip ca	vity	Insertion Pitch	Tape Thickness
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Chip Thickness	А	В	F	Т
	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
CK2125(0805)	(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
LK1005(0400)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
LK1005(0402)	(0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079±0.002)	(0.031max)
LK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
LK1000(0003)	(0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
LK2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
LK2120(0003)	(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
HK0603(2010)	0.3	$0.40{\pm}0.06$	$0.70{\pm}0.06$	2.0±0.05	0.45max
HK0003(2010)	(0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
HK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
111(1003(0402)	(0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079±0.002)	(0.031max)
HK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
HK1000(0003)	(0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
BK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
DK1003(0402)	(0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079±0.002)	(0.031max)
BK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
BK1000(0003)	(0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
BK2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
BK2125(0605)	(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
BK2010(0804)	0.45	1.2±0.1	2.17±0.1	4.0±0.1	0.80max
D1(2010(0004)	(0.018)	(0.047 ± 0.004)	(0.085 ± 0.004)	(0.157±0.004)	(0.031max)
BKP1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
DIA 1000(0000)	(0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
BKP2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
DIX 2120(0000)	(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)





⑤リール寸法 Reel Size

⑥トップテープ強度 Top tape strength

トップテープの剥離力は、下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.

5 FERRITE PRODUCTS

Multilayer chip inductors and beads

							Spec	ified Value	9 1								
Item	BK1005	BK1608	BK2125	AR	RAY	BKP1608	BKP2125	CK2125	LK1005	LK1608	LK2125	HK0603	HK1005	HK1005	HK1608	HK2125	Test Methods and Remarks
				BK2010	BK3216												
1.Operating Temperature Range		-5	i5 to +12	25°C		—55 to	9 +85℃		—40 to	o +85℃		—55 to-	+125℃	—55 to +85°C	—40 to	+85℃	
2.Storage Tem-		-5	i5 to +12	25°C		-55 to) +85℃		-40 to	o +85℃		-55 to-	+125℃	—55 to +85°C	-40 to	+85℃	
perature Range 3.Rated Current	150 ~	150~	200~	100mA	100~	1.0~	2.0~	60~	10~	1~	5~	50~	150~	200~	300	mΛ	
S. Nated Ourient	1000mA	1500mA	1200mA	DC	200mA	1.0∼ 3.0A	4.0A	220mA	25mA	1~ 50mA	300mA	250mA	300mA	200~ 900mA	DC		
	DC	DC	DC		DC	DC	DC	DC	DC	DC	DC	DC	DC	DC			
1.Impedance	68~	22~	15~	5~	68~	33~	33~		50		50						BK1005 Series:
	1000Ω	2500Ω	2500Ω	600Ω	1000Ω	390Ω	220Q										Measuring frequency: 100±1MHz
	±25%	±25%	±25%	±25%	±25%	±25%	±25%										Measuring equipment: HP4291A
																	Measuring jig: 16192A, 16193A
																	BK1608, 2125 Series:
																	BKP1608, 2125 Series:
																	Measuring frequency: 100±1MHz
																	Measuring equipment: HP4291A, 4195
																	Measuring jig: 16092A or 16192A (HW)
																	BK2010, 3216 Series:
																	Measuring frequency: 100±1MHz
																	Measuring equipment: HP4291A,4195A
																	Measuring jig: 16192A
i. Inductance				!		1	1	1.0 to	0.012 to	0.047 to	0.047 to	1.0 to 5.6nH:	1.0 to §	5.6nH:	1.0 to 5.6nH:	1.5 to 5.6nH:	CKSeries:
								10.0µH:	2.2µH:	33.0 <i>µ</i> H:	33.0µH:	±0.3nH,	±0.2nł	H,	±0.3nH,	±0.3nH,	Measuring frequency: 2 to 10 MHz (CK212
								±20%	±10%	±20%		6.8 to 47nH:	1.0 to		6.8 to 120nH:		
										0.10 to	0.10 to	±5%	±0.3nl		±3%	±5%	LK Series:
										12.0µH:	12.0µH:			120nH:	6.8 to 220nH:		Measuring frequency: 10 to 25 MHz (LK100
										±10%	±10%		±3%		±5%		Measuring frequency: 1 to 50 MHz (LK1608
														120nH:			Measuring frequency: 0.4 to 50MHz (LK212
													±5%,				Measuring equipment, jig:
																	HP4194A + 16085B + 16092A (or its equival
																	HP4195A + 41951 + 16092A (or its equivale HP4294 + 16192A
																	HP4291A + 16193A (LK1005)
																	Measuring current:
																	1mA rms (0.047 to 4.7 µH)
																	0.1mA rms (5.6 to 33µH)
																	HK Series:
																	Measuring frequency:
																	100MHz (HK0603, HK1005)
																	Measuring frequency:
																	50 / 100MHz (HK1608, 2125)
																	Measuring equipment, jig:
																	HP4291A + 16193A (HK1005)
																	HP4195A + 16092A + in-house made ji
																	(HK1608, 2125)

* Definition of rated current : In the CK and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

In the BK Series P type, the rated current is the value of current at which the temperature of the element is increased within 40°C.

In the LK and HK Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.

Multilayer chip inductors and beads

								Specifie	ed Value								
Item	BK1005	BK1608	BK2125		RAY		BKP2125	CK2125	LK1005	LK1608	LK2125	HK0603	HK1005	HK1005	HK1608	HK2125	Test Methods and RemarKs
				BK2010	BK3216												
6.Q								20min.	10 to 20 min.	10 to 35 min.	15 to 50 min.	5min.	8n	nin.	8 to 12 min.	10 to 18 min.	CK Series: Measuring frequency: 2 to 10 MHz (CK2125)
																	LK Series: Measuring frequency: 10 to 25 MHz (LK1005) Measuring frequency: 1 to 50 MHz (LK1608) Measuring frequency: 0.4 to 50MHz (LK2125) Measuring equipment, jig: HP4194A + 16085B + 16092A (or its equivalent) HP4195A + 41951 + 16092A HP4294 + 16192A HP4291A + 16193A (LK1005) (or its equivalent) Measuring current: 1mA rms (0.047 to 4.7μ H) 0.1mA rms (5.6 to 33μ H) HK Series: Measuring frequency: 100MHz (HK0603, HK1005) Measuring frequency: 50 / 100MHz (HK1608, 2125)
		1	I	I	I	I	1										Measuring equipment, jig: HP4291A + 16193A(HK1005) HP4195A + 16092A + in-house made jig (HK1608, 2125)
7.DC Resistance	0.005 to 0.80Ω max.	0.05 to 1.10Ω max.	0.05 to 0.75Ω max.	0.01 to 0.70Ω max.	0.15 to 0.80Ω max.	0.025 to 0.140Ω max.	0.020 to 0.050Ω max.	0.26 to 0.65Ω max.	0.7 to 1.70Ω max.	0.3 to 2.95Ω max.	0.20 to 1.25Ω max.	0.14 to 2.8Ω max.	0.0 1.6 ma		0.05 to 1.5Ω max.	0.10 to 1.5Ω max.	Measuring equipment: VOAC-7412 (made by Iwasaki Tsushinki) • VOAC-7512(made by Iwasaki Tsushinki)
8.Self Resonance Frequency(SRF)								24 to 75MHz min.	40 to 180MHz min.	9 to 260MHz min.	13 to 320MHz min.	1300 to 10000MHz min.	600 ⁻ 1000 min.	to OMHz	400 to 10000MHz min.	200 to 4000MHz min.	LK Series: Measuring equipment: HP4195A Measuring jig: 41951 + 16092A (or its equivalent) HK Series: Measuring equipment: HP8719C • HP8753D(HK2125)
9.Temperature Characteristic											<u> </u>			ctance ch in ±10%	•	<u>I</u>	HK Series: Temperature range: -30 to +85°C Reference temperature: +20°C
10. Resistance to Flexure of Substrate	No mech	anical dan	nage.														Warp: 2mm Testing board: glass epoxy-resin substrate Thickness: 0.8mm

5 FERRITE PRODUCTS

RELIABILITY DATA

Multilayer chip inductors and beads

								Specif	ied Valu	е							
Item	BK1005 BK	K1608 E	BK2125	; 	ARRAY 10 BK3216		8 BKP2125	CK212	5 LK100	5 LK1608	LK2125	HK0603	HK1005	HK1005	HK1608	HK2125	Test Methods and Remarks
	At least 75 solder.	5% of t	ermina	al elect	rode is co	overed b	y new			of termin				of termir		trode	Solder temperature: 230±5'C Duration: 4±1 sec.
12.Resistance to	Appearan	ice: No	signific	cant al	bnormality	/		No m	echanic	al damage	э.	No med	chanical	damage			Solder temperature: 260±5°C
Soldering	Impedanc	ce char	nge: Wi	ithin ±	30%			Rema 70% I		rminal ele	ectrode:	Remair 70% mi		ninal elec	ctrode:		Duration: 10±0.5 sec. Preheating temperature: 150°C Preheating time: 3 min. Flux: Immersion into methanol solution with colophony for 3 to 5 sec. Recovery: 2 to 3 hrs of recovery under the stan- dard condition after the test. (See Note 1)
13.Thermal Shock	Appearan	nce: No	signific	cant al	bnormality	Ý		No		echanical		No med	chanical	damage			Conditions for 1 cycle
	Impedanc	ce char	nge: Wi	ithin ±	30%			mechanic damage. Inductanc change: Within ±10% Qchang Within ±20%	Q cha Withir	tance cha n ±10%	inge:	±10%		hange: nin ±20%			step 1: Minimum operating temperature +0/-3°C 30±3 min. step 2: Room temperature 2 to 3min. step 3: Minimum operating temperature +0/-3°C 30±3 min. step 4: Room temperature 2 to 3min. Number of cycles: 5 Recovery: 2 to 3 hrs of recovery under the stan- dard condition after the test. (See Note 1)

(Note 1) When there are questions concerning mesurement result : measurement shall be made after 48±2 hrs of recovery under the standard condition. 5 FERRITE PRODUCTS

3/4

RELIABILITY DATA

FERRITE PRODUCTS

Multilayer chip inductors and beads

						Specifie	ed Value								
Item	BK1005 BK1608	BK2125	ARRAY BK2010 BK3216	BKP1608	BKP2125	CK2125	LK1005	LK1608	LK2125	HK0603	HK1005	HK1005	HK1608	HK2125	Test Methods and Remarks
I. Damp Heat	Appearance: No) signific	ant abnormality			No	No		No	No med	 hanical c	l lamage.			BK Series:
(Steady state)		-	-			mechanical	mechai	nical	mechanical			•			Temperature: 40±2°C
	Impedance cha	nge: Wit	hin ±30%			damage.	damag		damage.	Inducta	nce chan	ge: Within	1 ±10%		Humidity: 90 to 95%RH
		5										5			Duration: 500 ⁺²⁴ / ₋₀ hrs
						Inductance	Inducta	nce	Inductance	Q chan	ge: Withi	n +20%			Recovery: 2 to 3 hrs of recovery under th
						change:	change		change:		9				standard condition after the remo
						Within	Within		Within						fro test chamber.(See Note1)
						±10%	±10%		±10%						
						10/0	10/0		-10/0						LK, HK Series:
						Ochongo	Ochon		Qchange:						
						Qchange:	Qchang		-						Temperature: 40±2°C (LK Series)
						Within	Within		Within						60±2°C (HK Series)
						±20%	±30%		±20%						Humidity: 90 to 95%RH
															Duration: 500±12 hours
															Recovery: 2 to 3 hrs of recovery under th
															standard condition after the rem
															from test chamber.
5.Loading under		damage,	, Inductance cha	inge :		No	No	No	No	No med	chanical	damage.			BK1005 Series:
Damp Heat	within±30%					mechanical	mechanical	mechanical	mechanical						Temperature: 40±2°C (LK Series)
						damage.	damage.	damage.	damage.	Inducta	nce char	nge: With	in ±10%		Humidity: 90 to 95%RH
								Inductance							Duration: 500 ⁺²⁴ ₋₀ hrs
						Inductance	Inductance	change:	Inductance	Q chan	ge: With	in ±20%			Applied current: Rated current
						change:	change:	0.047 to	change:						Recovery: 2 to 3 hrs of recovery under the
						Within	Within	12.0µH:	Within						standard condition after the rem
						±10%	±10%	Within	±10%						from test chamber. (See Note1)
								±10%							
						Q change:	Q change:	15.0 to	Q change:						LK, HK Series:
						Within	Within	33.0µH:	Within						Temperature: 40±2°C (LK Series)
						±30%	±30%	Within	±30%						60±2℃ (HK Series)
								±15%							Humidity: 90 to 95%RH
								Q change:							Duration: 500±12 hrs
								Within							Applied current: Rated current
								±30%							Recovery: 2 to 3 hrs of recovery under the
															standard condition after the rem
															from test chamber.
6.Loading at	Appearance: No	sianific	ant abnormality			No	No	No	No	No med	hanical c	lamade.			BK Series:
High						mechanical	mechanical	mechanical	mechanical						Temperature: 125±3°C
Temperature	Impedance cha	nae [.] Wit	hin +30%			damage.	damage.	damage.	damage.	Inducta	nce chan	qe: Withir	n +10%		Applied current: Rated current
Tomporataro	impodance ona					damago.	damago	Inductance	danago.	induota	nee enan	.go			Duration: 500^{+24}_{-0} hrs
						Inductance	Inductance	change:	Inductorica	O chan	ge: Withi	n +20%			Recovery: 2 to 3 hrs of recovery under the
						change:	change:	0.047 to	change:	Gonari	ge. within	11 -20 /0			standard condition after the rem
						Within	Within	12.0µH:	Within						from test chamber. (See Note1)
						±10%	±10%	Within	±10%						from test chamber. (See Note I)
						10/0	10/0		10/0						
						0	0.4	±10%	0						
							Q change:	15.0 to	Q change:						LK, HK Series:
						Within ±30%	Within ±30%	33.0µH:	Within ±30%						Temperature: 85±2°C (LK Series)
						100/0	100/0	Within	±.00 /0						: 85±2°C (HK 1608, 2125)
								±15%							: 85±2°C (HK 1005 operating
								Q change:							temperature range -55 to 12
								Within							: 125±2°C (HK 0603, HK100
								±30%							operating temperature ran
															–55 to 125℃)
															Applied current: Rated current
															Duration: 500±12 hrs
															Recovery: 2 to 3 hrs of recovery under th
															standard condition after the rem
						i	1		1	i i					

Note on standard condition: "standard condition" referred to herein is defined as follows:

(Note 1)

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 65 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

Stages	Precautions	Technical considerations		
1. Circuit Design	 Verification of operating environment, electrical rating and performance A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Current (Verification of Rated current) The operating current for inductors must always be lower than their rated values. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. 			
2. PCB Design	 Pattern configurations (Design of Land-patterns) When inductors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land pat- terns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropri- ate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by sol- der-resist. 	1. The following diagrams and tables show some examples of recommender patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs an also shown. (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs Land pattern Chip inductor Solder-resist Solder-resist Solder-resist Solder-resist		
		Recommended land dimensions for reflow-soldering (unit: mm) Type 0603 1005 1608 2125 ω 0.6 1.0 1.6 2.0 ω 0.3 0.5 0.8 1.25 A 0.20~0.30 0.45~0.55 0.6~0.8 0.8~1.2 B 0.20~0.30 0.45~0.55 0.6~0.8 0.9~1.6 Excess solder can affect the ability of chips to withstand mechanical stresses Therefore, please take proper precautions when designing land-patterns. ω <th <="" colspan="2" td=""></th>		
		a 0.7~0.9 0.5~0. b 0.8~1.0 0.5~0. c 0.4~0.5 0.2~0. d 0.8 0.5		

Precautions on the use of Multilayer chip Inductors, Multilayer chip inductors for high frequency, Multilayer ferrite chip beads

1/7

Stages	Precautions	Technical considerations						
PCB Design		(2) Examples of good and bad solder application						
		Not recommended Recommended						
		Mixed mounting of SMD and leaded compo- nents						
		C o m p o n e n t placement close to the chassis						
		Hand-soldering of leaded com- ponents near mounted compo- nents						
		Horizontal com- ponent place- ment Solder-resist						
	 Pattern configurations (Inductor layout on panelized [breakaway] PC boards) 1. After inductors have been mounted on the boards, chips 	1-1. The following are examples of good and bad inductor layout; SMD induct should be located to minimize any possible mechanical stresses from bo warp or deflection.						
	can be subjected to mechanical stresses in subsequent	Item Not recommended Recommended						
	manufacturing processes (PCB cutting, board inspec- tion, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully per-	Deflection of the board Position the component at a right angle to the direction of the mechanical stresses the are anticipated.						
	formed to minimize stress.	1-2. To layout the inductors for the breakaway PC board, it should be noted the amount of mechanical stresses given will vary depending on indu- layout. An example below should be counted for better design.						
		B Slit B Magnitude of stress A>B = C>D>E						
		1-3. When breaking PC boards along their perforations, the amount of mechan cal stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful push-back, slit, V-grooving, and perforation. Thus, any ideal SMD induct layout must also consider the PCB splitting procedure.						

Precautions on the use of Multilayer chip Inductors, Multilayer chip inductors for high frequency, Multilayer ferrite chip be	ads

Stages	Precautions	Technical considerations
3.Considerations for automatic placement	 Adjustment of mounting machine Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. The maintenance and inspection of the mounter should be conducted periodically. 	 If the lower limit of the pick-up nozzle is low, too much force may be impo on the inductors, causing damage. To avoid this, the following points sho be considered before lowering the pick-up nozzle: (1)The lower limit of the pick-up nozzle should be adjusted to the surface leve the PC board after correcting for deflection of the board. (2)The pick-up pressure should be adjusted between 1 and 3 N static loads. (3)To reduce the amount of deflection of the board caused by impact of the p up nozzle, supporting pins or back-up pins should be used under the PC bo The following diagrams show some typical examples of good pick-up noz placement:
		Improper method Proper method
		Single-sided mounting
		Double-sided mounting
		2. As the alignment pin wears out, adjustment of the nozzle height can ca chipping or cracking of the inductors because of mechanical impact on inductors. To avoid this, the monitoring of the width between the alignment in the stopped position, and maintenance, inspection and replacement of pin should be conducted periodically.
	 Selection of Adhesives Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is impera- 	 Some adhesives may cause reduced insulation resistance. The differe between the shrinkage percentage of the adhesive and that of the induc may result in stresses on the inductors and lead to cracking. Moreover, little or too much adhesive applied to the board may adversely affect com nent placement, so the following precautions should be noted in the applition of adhesives.
	tive to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	 (1)Required adhesive characteristics a. The adhesive should be strong enough to hold parts on the board during mounting & solder process. b. The adhesive should have sufficient strength at high temperatures. c. The adhesive should have good coating and thickness consistency. d. The adhesive should be used during its prescribed shelf life. e. The adhesive should harden rapidly f. The adhesive must not be contaminated. g. The adhesive should not be toxic and have no emission of toxic gasses.

3/7

Stages	Precaution	Technical considerations
3.Considerations for automatic placement		When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhe- sive on to the land or solder pad.
		[Recommended conditions]
		Figure 2125 case sizes as examples
		a 0.3mm min
		b 100 ~120 μm
		c Area with no adhesive
		Amount of adhesives After inductors are bonded
4.Soldering	 Selection of Flux Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; (1)Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. (2)When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. (3)When using water-soluble flux, special care should be taken to properly clean the boards. 	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	◆Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	 1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100 °C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.

5/7

5 FERRITE PRODUCTS

Stages	Precautions	Technical considerations
4.Soldering	◆And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature CO 200 500 CO 200 CO 200 CO 200 CO 200 CO 200 CO 200 CO 200 CO 200 CO 200 CO 200 CO 200 CO 200 CO CO 200 CO CO 200 CO CO CO CO CO CO CO CO CO CO
		Within 10 seconds Caution 1. The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below: $\frac{1/2 \tau \sim 1/3 \tau}{1}$
		 2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible.
		[Wave soldering] Temperature profile Temperature 250°C
		 Caution 1. Make sure the inductors are preheated sufficiently. 2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.
		[Hand soldering] Temperature profile Temperature CO Preheating 250 Preheating 250 C 260 C 20 C 20 C 20 C 20 C C 20 C C 20 C 20 C C 20 C 20 C C 20 C 20 C C 20 C 20 C C 20 C 20 C C 20 C 20 C 20 C C 20 C 20 C C 20 C 20 C C 20 C C 20 C 20 C C 20 C C 20 C 20 C C 20 C C C C
		Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor.
5.Cleaning	 Cleaning conditions When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 	 The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance).

6/7

5 FERRITE PRODUCTS

Stages	Precautions	Technical considerations
5.Cleaning	 Cleaning conditions should be determined after verify- ing, through a test run, that the cleaning process does not affect the inductor's characteristics. 	 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 w/l Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6. Post cleaning processes	 Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction. 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. 	
7. Handling	 Breakaway PC boards (splitting along perforations) When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. Board separation should not be done manually, but by using the appropriate devices. General handling precautions Always wear static control bands to protect against ESD. Keep the inductors away from all magnets and magnetic objects. Use non-magnetic tweezers when handling inductors. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. Keep inductors away from items that generate magnetic fields such as speakers or coils. Mechanical considerations Be careful not to subject the inductors to excessive mechanical shocks. If inductors are dropped on the floor or a hard surface they should not be used. When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

Stages	Precautions	Technical considerations
8. Storage conditions	 Storage To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40 °C Humidity Below 70% RH The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery. *The packaging material should be kept where no chlorrine or sulfur exists in the air. 	1. If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors