ET-3528R-111W ET-3528A-111W ET-3528Y-111W ET-3528T-111W ET-3528B-111W Ultra high luminous efficacy, combined with the flexibility in design due to its slim and miniature size, PLCC LED Series are optimized to be used as lighting for signboard. #### **Features** - High luminous Intensity and high efficiency - Based on Blue/Green : InGaN, Red/Amber/Yellow : AlGaInP technology - Wide viewing angle: 120° - Excellent performance and visibility - Suitable for all SMT assembly methods - IR reflow process compatible - Environmental friendly; RoHS compliance ### **Typical Applications** - Signal and Symbol Luminaire - Indoor and Outdoor Displays - Backlighting (illuminated advertising, general lighting) - Interior Automotive Lighting # **Table of Contents** | Product Nomenclature | 2 | |--|----| | Environmental Compliance | 3 | | LED Package Dimensions and Polarity | 4 | | Absolute Maximum Ratings | 5 | | Luminous Intensity Characteristics | 6 | | Forward Voltage Characteristics | 6 | | JEDEC Information | 7 | | Reliability Items and Failure Measures | 8 | | Color Spectrum and Radiation Pattern | 9 | | Optical & Electrical Characteristics | 11 | | Product Soldering Instructions | 12 | | Product Packaging Information | 14 | | Precaution for Use | 16 | | Forward Voltage Ranks | 18 | | Luminous Intensity Ranks | 18 | | Dominant Wavelength Ranks | 19 | ## **Product Nomenclature** The following table describes the available color, package size, and chip quantity. < Table 1 PLCC 3528 series Nomenclature > | | X1
LED Item | Pack | X2
kage Type | | X3
Emitting Color | | Chip | X4
Quality | X5
Phosphor | |------|----------------|------|-----------------|------|----------------------|-------|------|---------------|----------------| | Code | Type | Code | Type | Code | Ty | /ре | Code | Type | | | ET | Edison TopLED | 3528 | 3.5*2.8mm | W | Cool White | 0 | 1 | 1 pcs | | | | | 5050 | 5.0*5.0mm | Х | Warm White | • | 3 | 3 pcs | | | | | | | Н | Neutral White | • | Α | 0.500 | | | | | | | R | Red | • | В | 17/7 | | | | | | | Α | Amber(615nm) | • | | | | | | | | | Υ | Yellow(590nm) | • | | | | | | | | | Т | True Green | • | | | | | | | | | В | Blue | • | | | | | | | | | RTB | RGB 3 chips | • • • | | | | | X6
Die source | | X7
Frature | |------------------|------|---------------| | | Code | Туре | | | W | White surface | | | В | Black surface | | | D | Black housing | ## **Environmental Compliance** PLCC 3528 series are compliant to the Restriction of Hazardous Substances Directive or RoHS. The restricted materials including lead, mercury cadmium hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ether (PBDE) are not used in PLCC 3528 series to provide an environmentally friendly product to the customers. ## **LED Package Dimensions and Polarity** < Figure 1 PLCC 3528 series Dimensions > < Figure 2 PLCC 3528 series circuit diagram and recommended soldering pad > #### Notes: - 1. All dimensions are in mm. - 2. Tolerance: ± 0.20 mm ## **Absolute Maximum Ratings** The following table describe absolute maximum ratings of PLCC 3528 series. < Table 2 Absolute maximum ratings for PLCC 3528 series> | Parameter | Rating | Rating | Unit | Symbol | |----------------------------------|-------------------|-----------------|-------------------------|----------------| | Forward Current | (R)/(A)/(Y)
35 | (T) / (B)
30 | mA | I _F | | Pulse Forward Current | 33 | 30 | ША | ' F | | | 80 | 100 | mA | | | (tp≦100μs, Duty cycle=0.25) | 40 | 40 | ^ | | | Reverse Current | 10 | 10 | uA | I _R | | Reverse Voltage | 5 | 5 | V | V_R | | Forward Voltage | 2.8 | 3.7 | V | V_{F} | | Power Dissipation | 100 | 110 | mW | | | LED Junction Temperature | 115 | 5 | $^{\circ}\!\mathbb{C}$ | T_J | | Operating Temperature | -30 ~ | +85 | $^{\circ}\! \mathbb{C}$ | | | Storage Temperature | -40 ~ H | ⊦ 100 | $^{\circ}\!\mathbb{C}$ | | | Soldering Temperature | 255~2 | 260 | $^{\circ}\!\mathbb{C}$ | | | Manual Soldering at 350°C (Max.) | 3 | | Sec | | ### Notes: - 1. Proper current derating must be observed to maintain junction temperature below the maximum at all time. - 2. LEDs are not designed to be driven in reverse bias. - 3. tp: Pulse width time ## **Luminous Intensity Characteristics** The following table describes luminous intensity of PLCC 3528 series. < Table 3 Luminous intensity characteristics at I_F =20mA and Ta=25 $^{\circ}$ C for PLCC 3528 series > | Part Name | Part Name Color | | | Luminous intensity(mcd) | | | | |---------------|-----------------|------|-------|-------------------------|----------|--|--| | r art ivaille | 30101 | Min. | Тур. | Max. | Typ.(lm) | | | | ET-3528R-111W | Red | 300 | 500 | | 1.6 | | | | ET-3528A-111W | Amber | 300 | 500 | | 1.6 | | | | ET-3528Y-111W | Yellow | 300 | 500 | | 1.6 | | | | ET-3528T-111W | True Green | 700 | 1,100 | | 3.5 | | | | ET-3528B-111W | Blue | 175 | 310 | | 0.9 | | | #### Note: 1. Luminous intensity is measured with an accuracy of ± 10%. ## **Forward Voltage Characteristics** The following table describes forward voltage of PLCC 3528 series < Table 4 Forward voltage characteristics at I_F=20mA and Ta=25°C for PLCC 3528 > | Part Name | Color | | V_{F} | | Unit | |---------------|------------|------|---------|------|-------| | i ait Haille | 00101 | Min. | Тур. | Max. | Offic | | ET-3528R-111W | Red | 1.8 | | 2.8 | V | | ET-3528A-111W | Amber | 1.8 | | 2.8 | V | | ET-3528Y-111W | Yellow | 1.8 | | 2.8 | V | | ET-3528T-111W | True Green | 2.8 | | 3.7 | V | | ET-3528B-111W | Blue | 2.8 | | 3.7 | V | #### Note: 1. Forward Voltage is measured with an accuracy of \pm 0.1V ## **JEDEC Information** JEDEC is used to determine what classification level should be used for initial reliability qualification. Once identified, the LEDs can be properly packaged, stored and handled to avoid subsequent thermal and mechanical damage during the assembly solder attachment and/or repair operation. The present moisture sensitivity standard contains six levels, the lower the level ,the longer the devices floor life. PLCC 3528 series are certified at level 2a. This means PLCC 3528 series have a floor life of 4 weeks before PLCC 3528 series need to re-baked. < Table 5 JEDEC characteristics for PLCC 3528 series > | Floor Life | | or Life | Soak Requirements | | | | |------------|---------|------------------|-------------------|--------------|-------------------------|--------------| | Level | Time | Condition | Sta | ndard | Accelerated Environment | | | | Time | Condition | Time (hours) | Condition | Time (hours) | Condition | | 2a | 4 weeks | ≦30℃ /
60% RH | 696 +5/-0 | 30℃ / 60% RH | 120 +1/-0 | 60℃ / 60% RH | | | Floor Life | | Soak Requirements | | | | | |-------|------------------------|--------------|------------------------|-------------|------------------------|-------------|--| | Level | FIO | or Life | Stan | dard | Accelerated Equivalent | | | | | Time | Condition | Time(hours) | Condition | Time(hours) | Condition | | | 1 | Unlimited | ≦30°C/85% RH | 168 +5/-0 | 85°C/85% RH | | | | | 2 | 1 year | ≦30°C/60% RH | 168 +5/-0 | 85°C/60% RH | | | | | 2a | 4 weeks | ≦30°C/60% RH | 696 ¹ +5/-0 | 30°C/60% RH | 120 +1/-0 | 60°C/60% RH | | | 3 | 168 hours | ≦30°C/60% RH | 192 ¹ +5/-0 | 30°C/60% RH | 40 +5/-0 | 60°C/60% RH | | | 4 | 72 hours | ≦30°C/60% RH | 96 ¹ +5/-0 | 30°C/60% RH | 20 +5/-0 | 60°C/60% RH | | | 5 | 48 hours | ≦30°C/60% RH | 72 ¹ +5/-0 | 30°C/60% RH | 15 +5/-0 | 60°C/60% RH | | | 5a | 24 hours | ≦30°C/60% RH | 48 ¹ +5/-0 | 30°C/60% RH | 10 +5/-0 | 60°C/60% RH | | | 6 | Time on tabel
(TOL) | ≦30°C/60% RH | TOL | 30℃/60% RH | | | | #### Note: The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag, and includes maximum time allowed out of the bag at the distributor's facility. Version: 3 ## **Reliability Items and Failure Measures** ### Reliability test The following table describes operating life, mechanical, and environmental tests performed on PLCC 3528 series. <Table 6 Operating life, mechanical, and environmental characteristics for PLCC 3528 series > ### Reliability Test 1 | Stress Test | Stress Conditions | Stress
Duration | Failure Criteria | |--------------------------|------------------------------|--------------------|------------------| | Temperature and Humidity | 60℃ / 60%RH | 120 hours | No catastrophics | | IR Reflow | Peak temp.=255~260°C*3 times | 3 times | No catastrophics | #### Reliability Test 2 | Stress Test | Stress Conditions | Stress
Duration | Failure Criteria | |--|--|--------------------|------------------| | Room Temperature Operating Life | 25°C, I _F = max DC (Note 2) | 1000 hours | No catastrophics | | High Temperature and high Humidity Life | 85°C / 85%RH, I _F = 5 mA | 1000 hours | No catastrophics | | Low Temperature Storage | -40 °C | 1000 hours | No catastrophics | | High Temperature and high Humidity Storage | 85°C / 85%RH | 1000 hours | No catastrophics | | Ambient Temperature Life | 25° C , I _F = 20 mA | 1000 hours | No catastrophics | | Temperature Cycle | -40°C/100°C ,30 min dwell $<\!15\text{min}$ transfer | 200 cycles | No catastrophics | | Thermal Shock | -40 / 100°C, 15 min dwell $\!<\!$ 10 sec transfer | 200 cycles | No catastrophics | #### Notes: - 1. Reliability test 2 is performed after reliability test 1 - 2. Depending on the maximum derating curve. - Failure Criteria: Electrical failures V_F Shift >=10% Luminous Intensity I_V Decay>= 35% ## **Color Spectrum and Radiation Pattern** ### **Emission Angle Characteristics** < Table 7 Emission angle Characteristics at I_F =20mA and Ta=25 $^{\circ}$ C for PLCC 3528 series > <Figure 3. Beam pattern diagram for PLCC 3528 series > ### Color Temperature or Dominant Wavelength Characteristics Ta=25℃ < Table 8 Dominant Wavelength or Peak wavelength or Color Temperature Characteristics at $$I_F$=20mA$ and Ta=25 $^\circ$ for PLCC 3528 series > | Part Name | Color | | V_{F} | | Unit | |---------------|------------|------|---------|------|-------| | i ait ivaille | 00101 | Min. | Тур. | Max. | Offic | | ET-3528R-111W | Red | 620 | 625 | 630 | nm | | ET-3528A-111W | Amber | 610 | 615 | 620 | nm | | ET-3528Y-111W | Yellow | 585 | 590 | 595 | nm | | ET-3528T-111W | True Green | 520 | 525 | 535 | nm | | ET-3528B-111W | Blue | 465 | 470 | 475 | nm | #### Note: 1. Wavelength is measured with an accuracy of ± 1nm < Figure 4 Wavelength & relative intensity for PLCC 3528 series.> ## **Optical & Electrical Characteristics** < Figure 5 Ambient temperature & forward current for PLCC 3528 series > < Figure 6 Forward current & relative intensity for PLCC 3528 series > < Figure 7 Forward voltage & forward current for PLCC 3528 series > # **Product Soldering Instructions** < Figure 8.Pad Dimension > ## Note: 1. All dimensions are measured in mm. The following reflow soldering profiles are provided for reference. It is recommended that users follow the recommended soldering profile provided by the manufacturer of the solder paste used < Figure 9 Time-temperature of JEDEC J-STD-020D > ### **Table of Classification Reflow Profiles** < Table 9 Reflow profiles > | Profile Feature | Sn-Pb Eutectic Assembly | Pb-Free Assembly | |--|------------------------------------|------------------------------------| | Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts) | 100 °C
150 °C
60-120 seconds | 150 °C
200 °C
60-120 seconds | | Average ramp-up rate
(Tsmax to Tp) | 3 °C/second max. | 3 °C/second max. | | Liquidous temperature (TL)
Time at liquidous (tL) | 183 °C
60-150 seconds | 217 °C
60-150 seconds | | Peak package body temperature (Tp)* | 230 °C ~235 °C * | 255 °C ~260 °C * | | Classification temperature (Tc) | 235 °C | 260 °C | | Time (tp)** within 5 °C of the specified classification temperature (Tc) | 20** seconds | 30** seconds | | Average ramp-down rate (Tp to Tsmax) | 6 °C/second max. | 6 °C/second max. | | Time 25 °C to peak temperature | 6 minutes max. | 8 minutes max. | ^{*} Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. # **Product Packaging Information** ## Taping Reel < Figure 10 Taping reel dimensions > ## **Packaging** < Figure 11 Packaging diagram > ### Package Label < Figure 12 Package label > < Table 10 Package dimensions and quantity > | Item | Quantity | Total | Dimensions(mm) | |-----------|---------------|-----------|----------------| | Reel | 2,000pcs | 2,000pcs | Diameter=178 | | Inner box | 5 reels | 10,000pcs | 240*235*67 | | Outer box | 5 inner boxes | 50,000pcs | 353*254*256 | #### **Precaution for Use** #### **Storage** #### 1.1 Before opening the package The LEDs should be kept at $<40^{\circ}$ C & <90%RH. The LEDs should be used within a year. When storing the LEDs, moisture proof package with absorbent material (silica gel) is recommended. #### 1.2 After opening the package The LEDs should be kept at $\leq 30^{\circ}$ C & $\leq 60\%$ RH. The LEDs should be soldered within 168 hours (7days) after opening the moisture proof package. If unused LEDs remain, they should be stored in moisture proof packages, such as sealed containers with moisture proof package within absorbent material (silica gel). It is also recommended to return the unused LEDs to the original moisture proof package and to seal the moisture proof package again. If the moisture absorbent material (silica gel) vapors or expires the expiration date, baking treatment should be performed by using the following conditions : 60° C for 20 hours. The LEDs electrode and leadframe comprise a silver plated copper alloy. The silver surface may be affected by environments. Please avoid conditions which may cause the LEDs being corroded or discolored. The corrosion or discoloration might lower solderability or affect optical characteristics. Please avoid rapid transition in ambient temperature, especially in high humidity environments where condensation can occur. #### **Static electricity** The products are sensitive to static electricity and highly taken care when handling them. Static electricity or surge voltage will damage the LEDs. It is recommended to wear an anti-electrostatic wristband or an anti-electrostatic glove when handling the LEDs. All devices, equipments and machinery must be properly grounded. It is recommended that measures be taken against surge voltage to the equipment that mounts the LEDs. #### Note: All the information published is considered to be reliable. However, EDISON OPTO does not assume any liability arising out of the application or use of any product described herein. EDISON OPTO reserves the right to make changes at any time without notice to any products in order to improve reliability, function or design. EDISON OPTO products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of EDISON OPTO. ## **Forward Voltage Ranks** < Table 11. Forward voltage rank at I_F =20mA and Ta=25 $^{\circ}$ C> | Color of Emission | Bin | Min | Max | Unit | |-------------------|-----|-----|-----|------| | Red | VD | 1.8 | 2.1 | | | Amber | VE | 2.1 | 2.4 | V | | Yellow | VF | 2.4 | 2.8 | | | True Con on | VG | 2.8 | 3.1 | | | True Green | VH | 3.1 | 3.4 | V | | Blue | VI | 3.4 | 3.7 | | Note: 1. Forward voltage measurement allowance is \pm 0.1V. ## **Luminous Intensity Ranks** | Color of Emission | Bin | Min | Max | Unit | |-------------------|-----|-------|-------|------| | | G | 300 | 350 | | | Red | Н | 350 | 400 | | | Amber | 1 | 400 | 500 | mcd | | Yellow | J | 500 | 600 | | | | K | 600 | 700 | | | | L | 700 | 850 | | | | M | 850 | 1,000 | | | True Green | N | 1,000 | 1,150 | mcd | | | 0 | 1,150 | 1,300 | | | | Р | 1,300 | 1,450 | | | | D | 175 | 200 | | | | Е | 200 | 250 | | | Blue | F | 250 | 300 | mcd | | | G | 300 | 350 | | | | Н | 350 | 400 | | Note: 1. Luminous Intensity Measurement Allowance is ± 10%. # **Dominant Wavelength Ranks** < Table 13 Dominant Wavelength rank at $I_{\textrm{F}}\text{=}20\textrm{mA}$ and Ta=25 $^{\circ}\text{C}\text{>}$ | Color of Emission | Bin | Min | Max | Unit | |-------------------|------|-----|-----|------| | Red | Full | 620 | 630 | nm | | Amahan | W | 610 | 615 | nm | | Amber | Χ | 615 | 620 | | | | W | 585 | 588 | | | Yellow | X | 588 | 591 | nm | | | Υ | 591 | 595 | | | | W | 520 | 525 | | | True Green | Χ | 525 | 530 | nm | | | Υ | 530 | 535 | | | Blue | Х | 465 | 470 | nm | | | Υ | 470 | 475 | | ## Note: 1. Dominant Wavelength is measured with an accuracy of \pm 1nm