Standard Features

· Low-voltage and standard-voltage operation

 $- V_{CC} = 1.7V$ to 5.5V

- Internally organized as 512 x 8 (4K), or 1024 x 8 (8K)
- I²C-compatible (two-wire) serial interface
- Schmitt Trigger, filtered inputs for noise suppression
- · Bidirectional data transfer protocol
- 1MHz (5V), 400kHz (1.7V, 2.5V, 2.7V) compatibility
- Write protect pin for hardware data protection
- 16-byte page write mode
 - Partial page writes allowed
- Self-timed write cycle (5ms max)
- High-reliability
 - Endurance: 1 million write cycles
 - Data retention: 100 years
- Green package options (Pb/Halide-free/RoHS compliant) - 8-lead SOIC, TSSOP, UDFN, 8-ball VFBGA, 5-lead SOT23
- · Die options: wafer form and tape and reel

Description

The Atmel[®] AT24C04C and AT24C08C provides 4096/8192-bits of serial electrically erasable and programmable read-only memory (EEPROM) organized as 512/1024words of 8-bits each. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operation are essential. The AT24C04C/C08C is available in space-saving 8-lead PDIP, 8-lead TSSOP, 8-lead JEDEC SOIC, 8-lead UDFN, 5-lead SOT23 and 8-ball VFBGA packages and is accessed via a two-wire serial interface.

		8-lead	d PDIP	8-1	ead SOI	С
Pin Name	Function				1 8	
NC	No Connect	A1/NC 🗌 2	7 🗆 WP		2 7	WP
A1	Address input (4K only)	A2 🗆 3	6 🗆 SCL	A2 🖂 3	3 6	SCL
A2	Address input	GND 4	5 🗆 SDA	GND 🔤	4 5	SDA
SDA	Serial data	8-lead	TSSOP	8-10	ead UDF	N
SCL	Serial clock input	NC 🗆 1	8 🗆 VCC	vcc	8 1	NC
WP	Write protect	A1/NC 2	7 🗆 WP	WP	7 2	A1/NC
GND	Ground	A2 🗌 3			6 3	
vcc	Power supply	GND 4	5 🗆 SDA		5 4 ottom Vie] -
	For use of 5-lead SOT23, he software A2 and A1 bits	5-lead	SOT23		all VFBC	
	n the device address word	SCL 1	5 WP	VCC	8 1	NC
-	nust be set to zero to			WP	7 2	A1/NC
F	properly communicate	GND 2		SCL	6 3	A2
		SDA 🔤 3	4 🔤 VCC	SDA (5 4	GND

Pin Configuration Figure 0-1.

I²C-Compatible (2-wire) Serial EEPROM

4Kbit (512 x 8)

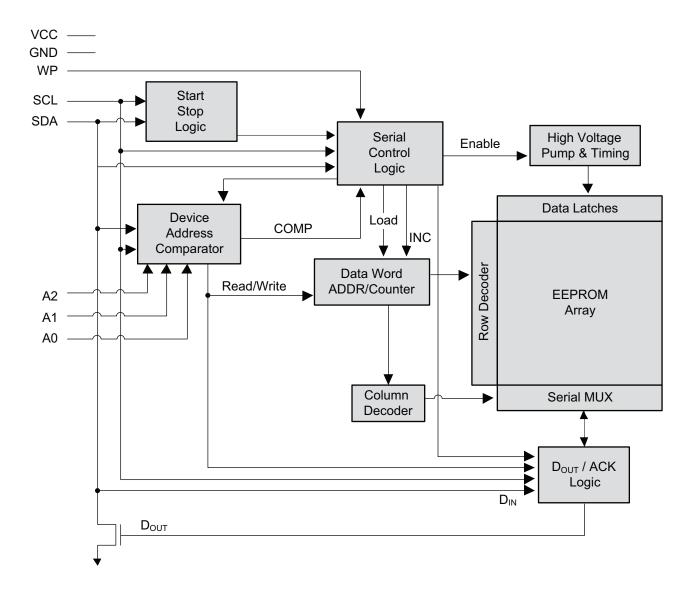
8Kbit (1024 x 8)

Atmel AT24C04C Atmel AT24C08C

Preliminary

Bottom View

8787A-SEEPR-10/11



Absolute Maximum Ratings

Operating temperature	–55°C to +125°C
Storage temperature	–65°C to +150°C
Voltage on any pin with respect to ground	–1.0V to +7.0V
Maximum operating voltage	6.25V
DC output current	5.0mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1. Block Diagram

1. Pin Description

SERIAL CLOCK (SCL): The SCL input is used to positive edge clock data into each EEPROM device and negative edge clock data out of each device.

SERIAL DATA (SDA): The SDA pin is bidirectional for serial data transfer. This pin is open-drain driven and may be wire-ORed with any number of other open-drain or open-collector devices.

DEVICE/PAGE ADDRESSES (A2 and A1): The AT24C04C uses the A2 and A1 inputs for hard wire addressing allowing a total of four 4K devices to be addressed on a single bus system. The A0 pin is a no connect and can be connected to ground (see Section 6. "Device Addressing" on page 9). The AT24C08C only uses the A2 input for hardware addressing and a total of two 8K devices may be addressed on a single bus system. The A0 and A1 pins are no connects and can be connected to ground (see Section 6. "Device Addressing" on page 9).

WRITE PROTECT (WP): AT24C04C/08C has a write protect pin that provides hardware data protection. The write protect pin allows normal read/write operations when connected to ground (GND). When the write protect pin is connected to V_{CC} , the write protection feature is enabled and operates as shown in Table 1-1.

WP Pin	Part of the Array Protected
Status	Atmel AT24C04C/08C
At V _{CC}	Full array
At GND	Normal read/write operations

2. Memory Organization

Atmel AT24C04C, 4K SERIAL EEPROM: Internally organized with 32 pages of 16 bytes each, the 4K requires a 9-bit data word address for random word addressing

Atmel AT24C08C, 8K SERIAL EEPROM: Internally organized with 64 pages of 16 bytes each, the 8K requires a 10-bit data word address for random word addressing.

Table 2-1.Pin Capacitance⁽¹⁾

Applicable over recommended operating range from T_A = 25°C, f = 1.0MHz, V_{CC} = +1.7V to +5.5V

Symbol	Test Condition	Max	Units	Conditions
C _{I/O}	Input/Output capacitance (SDA)	8	pF	$V_{I/O} = 0V$
C _{IN}	Input capacitance (A0, A1, A2, SCL)	6	pF	$V_{IN} = 0V$

Note: 1. This parameter is characterized and is not 100% tested

Table 2-2.DC Characteristics

Applicable over recommended operating range from: $T_{AI} = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +1.7V$ to +5.5V (unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Тур	Max	Units
V _{CC1}	Supply Voltage		1.7		5.5	V
V _{CC2}	Supply Voltage		4.5		5.5	V
I _{CC}	Supply Current V _{CC} = 5.0V	Read at 100kHz		0.4	1.0	mA
I _{CC}	Supply Current V _{CC} = 5.0V	Write at 100kHz		2.0	3.0	mA
I _{SB1}	Standby Current V _{CC} = 1.7V	$V_{IN} = V_{CC} \text{ or } V_{SS}$			1.0	μA
I _{SB2}	Standby Current $V_{CC} = 5.0V$	$V_{IN} = V_{CC} \text{ or } V_{SS}$			6.0	μA
ILI	Input Leakage Current	$V_{IN} = V_{CC} \text{ or } V_{SS}$		0.10	3.0	μA
I _{LO}	Output Leakage Current	$V_{OUT} = V_{CC} \text{ or } V_{SS}$		0.05	3.0	μA
V _{IL}	Input Low Level ⁽¹⁾		-0.6		V _{CC} x 0.3	V
V _{IH}	Input High Level ⁽¹⁾		V _{CC} x 0.7		V _{CC} + 0.5	V
V _{OL2}	Output Low Level V _{CC} = 3.0V	I _{OL} = 2.1mA			0.4	V
V _{OL1}	Output Low Level V _{CC} = 1.7V	I _{OL} = 0.15mA			0.2	V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested

Table 2-3.AC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = +1.7V$ to +5.5V, CL = 1TTL Gate and 100pF (unless otherwise noted)

		1.7V, 2.	5V, 2.7V	5.	0V	
Symbol	Parameter	Min	Мах	Min	Мах	Units
f _{SCL}	Clock Frequency, SCL		400		1000	kHz
t _{LOW}	Clock Pulse Width Low	1.2		0.4		μs
t _{HIGH}	Clock Pulse Width High	0.6		0.4		μs
t _l	Noise Suppression Time		50		50	ns
t _{AA}	Clock Low to Data Out Valid	0.1	0.9	0.05	0.55	μs
t _{BUF}	Time the bus must be free before a new transmission can start	1.2		0.5		μs
t _{HD.STA}	Start Hold Time	0.6		0.25		μs
t _{SU.STA}	Start Setup Time	0.6		0.25		μs
t _{HD.DAT}	Data In Hold Time	0		0		μs
t _{SU.DAT}	Data In Setup Time	100		100		ns
t _R	Inputs Rise Time ⁽¹⁾		0.3		0.3	μs
t _F	Inputs Fall Time ⁽¹⁾		300		100	ns
t _{SU.STO}	Stop Setup Time	0.6		.25		μs
t _{DH}	Data Out Hold Time	50		50		ns
t _{WR}	Write Cycle Time		5		5	ms
Endurance ⁽¹⁾	5.0V, +25°C, Byte Mode	1 Million		Write Cycles		

Note: 1. This parameter is ensured by characterization only

3. Device Operation

CLOCK and DATA TRANSITIONS: The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods (see Figure 5-2 on page 8). Data changes during SCL high periods will indicate a start or stop condition as defined below.

START CONDITION: A high-to-low transition of SDA with SCL high is a start condition which must precede any other command (see Figure 5-3 on page 8).

STOP CONDITION: A low-to-high transition of SDA with SCL high is a stop condition. After a read sequence, the stop command will place the EEPROM in a standby power mode (see Figure 5-3 on page 8).

ACKNOWLEDGE: All addresses and data words are serially transmitted to and from the EEPROM in 8-bit words. The EEPROM sends a zero to acknowledge that it has received each word. This happens during the ninth clock cycle.

STANDBY MODE: The Atmel AT24C04/08C features a low-power standby mode which is enabled: (a) upon power-up and (b) after the receipt of the STOP bit and the completion of any internal operations.

2-WIRE SOFTWARE RESET: After an interruption in protocol, power loss or system reset, any 2-wire part can be reset by following these steps: (a) Create a start bit condition, (b) clock nine cycles, (c) create another start bit followed by stop bit condition as shown below. The device is ready for next communication after above steps have been completed.

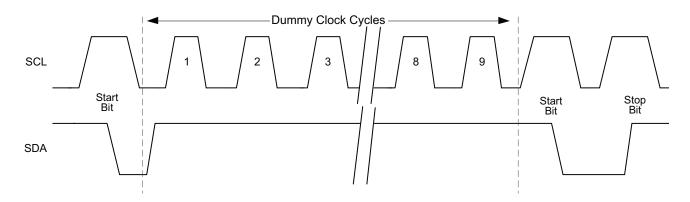


Figure 3-1. Software reset

4. Bus Timing

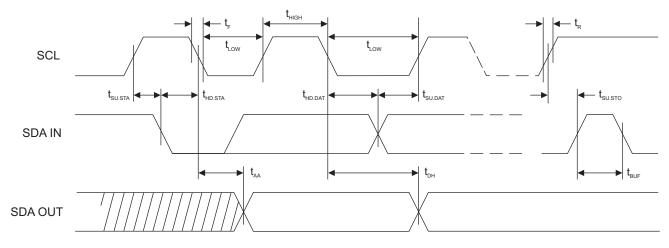
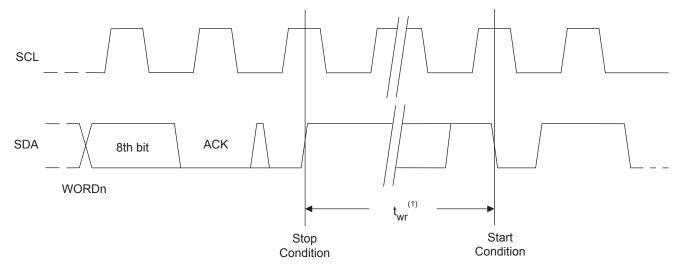
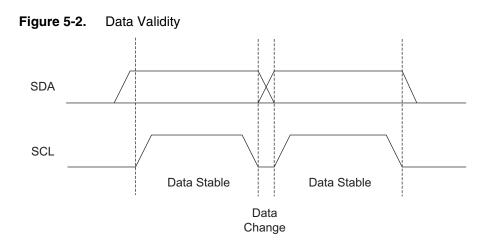
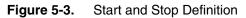
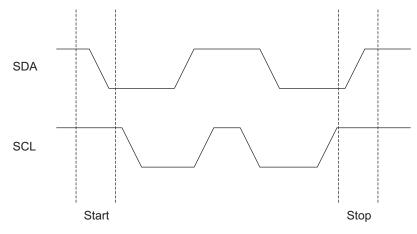


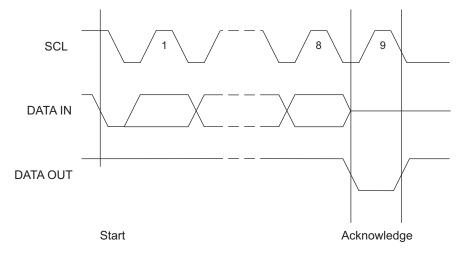
Figure 4-1. SCL: Serial Clock, SDA: Serial Data I/O

5. Write Cycle Timing


Figure 5-1. SCL: Serial Clock, SDA: Serial Data I/O


Notes: 1. The write cycle time t_{WR} is the time from a valid stop condition of a write sequence to the end of the internal clear/write cycle



6. Device Addressing

STANDARD EEPROM ACCESS: The 4K and 8K EEPROM device requires an 8-bit device address word following a start condition to enable the chip for a read or write operation. The device address word consists of a mandatory `1010' (0xA) sequence for the first four most significant bits as shownin Figure 8-1 on page 10. This is common to all the EEPROM devices.

The 4K EEPROM only uses the A2 and A1 device address bits with the third bit being a memory page address bit. The two device address bits must compare to their corresponding hard-wired input pins. The A0 pin is no connect.

The 8K EEPROM only uses the A2 device address bit with the next two bits being for memory page addressing. The A2 must compare to its corresponding hard-wired input pin. The A1 and A0 pins are no connect.

The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high and a write operation is initiated if this bit is low.

Upon a compare of the device address, the EEPROM will output a zero. If a compare is not made, the chip will return to a standby state.

For the SOT23 package offering, the 4K EEPROM software A2 and A1 bits in the device address word must be set to zero to properly communicate. The 8K EEPROM software A2 bit in the device address word must be set to zero to properly communicate.

7. Write Operations

BYTE WRITE: A write operation requires an 8-bit data word address following the device address word and acknowledgment. Upon receipt of this address, the EEPROM will again respond with a zero and then clock in the first 8-bit data word. Following receipt of the 8-bit data word, the EEPROM will output a zero and the addressing device, such as a microcontroller, must terminate the write sequence with a stop condition. At this time the EEPROM enters an internally timed write cycle, t_{WR}, to the nonvolatile memory. All inputs are disabled during this write cycle and the EEPROM will not respond until the write is complete (see Figure 8-2 on page 10).

PAGE WRITE: The 4K and 8K EEPROM is capable of a 16-byte page write.

A page write is initiated the same as a byte write, but the microcontroller does not send a stop condition after the first data word is clocked in. Instead, after the EEPROM acknowledges receipt of the first data word, the microcontroller can transmit up to seven data words. The EEPROM will respond with a zero after each data word received. The microcontroller must terminate the page write sequence with a stop condition (see Figure 8-3 on page 11).

The data word address lower three bits are internally incremented following the receipt of each data word. The higher data word address bits are not incremented, retaining the memory page row location. When the word address, internally generated, reaches the page boundary, the following byte is placed at the beginning of the same page. If more than eight data words are transmitted to the EEPROM, the data word address will "roll over" and previous data will be overwritten.

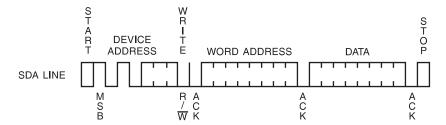
ACKNOWLEDGE POLLING: Once the internally timed write cycle has started and the EEPROM inputs are disabled, acknowledge polling can be initiated. This involves sending a start condition followed by the device address word. The read/write bit is representative of the operation desired. Only if the internal write cycle has completed will the EEPROM respond with a zero allowing the read or write sequence to continue.

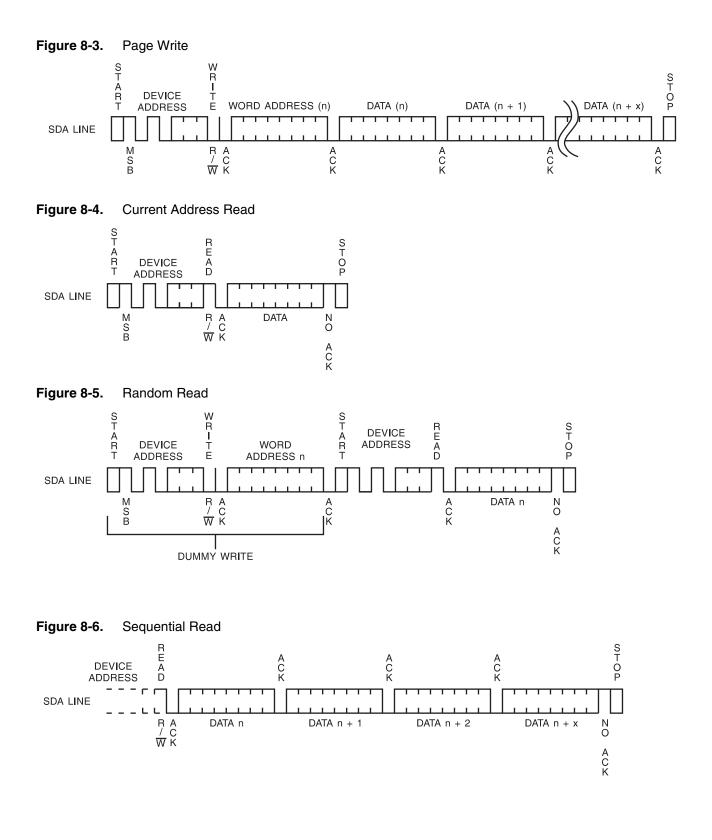
8. Read Operations

Read operations are initiated in the same way as write operations with the exception that the read/write select bit in the device address word is set to one. There are four read operations: current address read, random address read, sequential read, and serial number read.

CURRENT ADDRESS READ: The internal data word address counter maintains the last address accessed during the last read or write operation, incremented by one. This address stays valid between operations as long as the chip power is maintained. The address "roll over" during read is from the last byte of the last memory page to the first byte of the first page. The address "roll over" during write is from the last byte of the current page to the first byte of the same page.

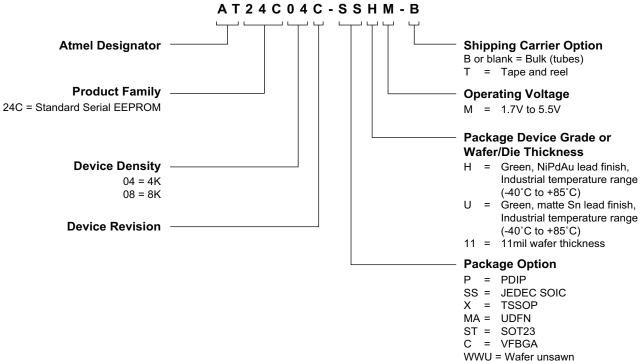

Once the device address with the read/write select bit set to one is clocked in and acknowledged by the EEPROM, the current address data word is serially clocked out. The microcontroller does not respond with an input zero but does generate a following stop condition (see Figure 8-4 on page 11).

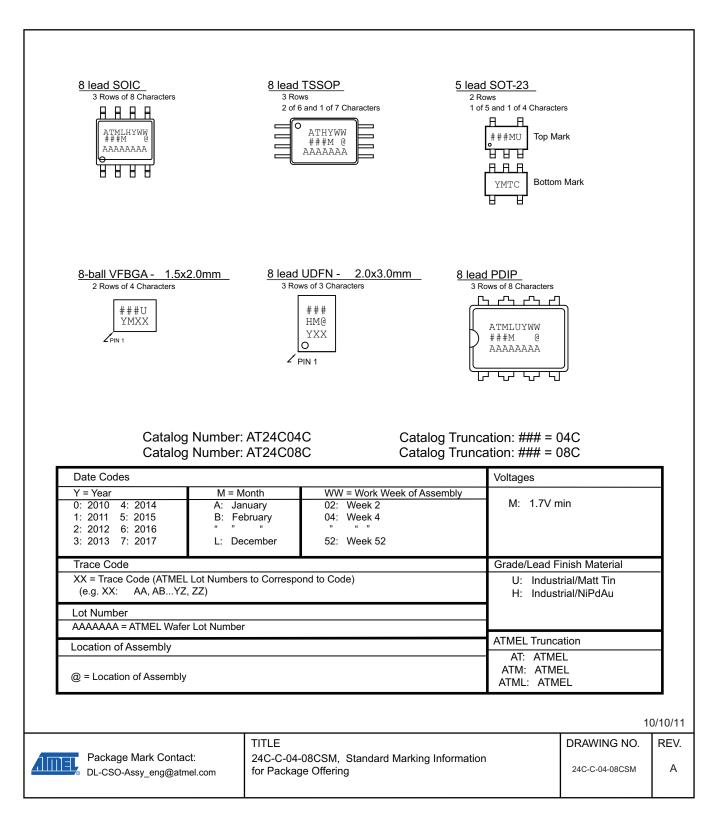

RANDOM READ: A random read requires a "dummy" byte write sequence to load in the data word address. Once the device address word and data word address are clocked in and acknowledged by the EEPROM, the microcontroller must generate another start condition. The microcontroller now initiates a current address read by sending a device address with the read/write select bit high. The EEPROM acknowledges the device address and serially clocks out the data word. The microcontroller does not respond with a zero but does generate a following stop condition (see Figure 8-5 on page 11).


SEQUENTIAL READ: Sequential reads are initiated by either a current address read or a random address read. After the microcontroller receives a data word, it responds with an acknowledge. As long as the EEPROM receives an acknowledge, it will continue to increment the data word address and serially clock out sequential data words. When the memory address limit is reached, the data word address will "roll over" and the sequential read will continue. The sequential read operation is terminated when the microcontroller does not respond with a zero but does generate a following stop condition (see Figure 8-6 on page 11).

Density	Access Area	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
4K	EEPROM	1	0	1	0	A ₂	A ₁	P ₀	R/W
8K	EEPROM	1	0	1	0	A ₂	P ₁	P ₀	R/W
		MSB							LSB

Figure 8-1.	Device Address
-------------	----------------





9. Ordering Code Detail

WDT = Die in tape and reel

10. Part Markings

11. Ordering Codes

Atmel AT24C04C Ordering Information

Ordering Code	Voltage	Package	Operation Range
AT24C04C-PUM (Bulk form only)	1.7V to 5.5V	8P3	
AT24C04C-SSHM-B ⁽¹⁾ (NiPdAu lead finish)	1.7V to 5.5V	8S1	
AT24C04C-SSHM-T ⁽²⁾ (NiPdAu lead finish)	1.7V to 5.5V	8S1	-
AT24C04C-XHM-B ⁽¹⁾ (NiPdAu lead finish)	1.7V to 5.5V	8X	Lead-free/Halogen-free/ Industrial Temperature
AT24C04C-XHM-T ⁽²⁾ (NiPdAu lead finish)	1.7V to 5.5V	8X	(-40°C to 85°C)
AT24C04C-MAHM-T ⁽²⁾ (NiPdAu lead finish)	1.7V to 5.5V	8MA2	
AT24C04C-STUM-T ⁽²⁾	1.7V to 5.5V	5TS1	-
AT24C04C-CUM-T ⁽²⁾	1.7V to 5.5V	8U3-1	
AT24C04C-WWU11 ⁽³⁾	1.7V to 5.5V	Die Sale	Industrial Temperature (-40°C to 85°C)

Notes: 1. "-B" denotes bulk

- "-T" denotes tape and reel SOIC = 4K per reel TSSOP, UDFN, SOT23, and VFBGA = 5K per reel
- 3. For Wafer sales, please contact Atmel Sales

	Package Type				
8P3	8-lead, 0.300" wide, Plastic Dual Inline (PDIP)				
8S1	8-lead, 0.150" wide, Plastic Gull Wing Small Outline (JEDEC SOIC)				
8X	8-lead, 4.4mm body, Plastic Thin Shrink Small Outline (TSSOP)				
8MA2	8-lead, 2.00mm x 3.00mm body, 0.50mm pitch, Dual No Lead (UDFN)				
5TS1	5-lead, 2.90mm x 1.60mm body, Plastic Thin Shrink Small Outline (SOT23)				
8U3-1	8-ball, die Ball Grid Array (VFBGA)				

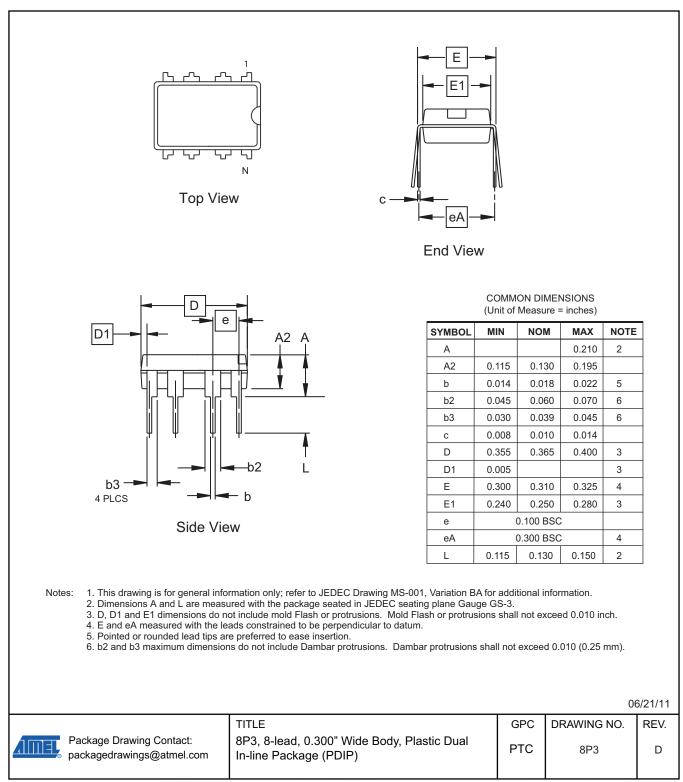
14 Atmel AT24C04C/08C [PRELIMINARY]

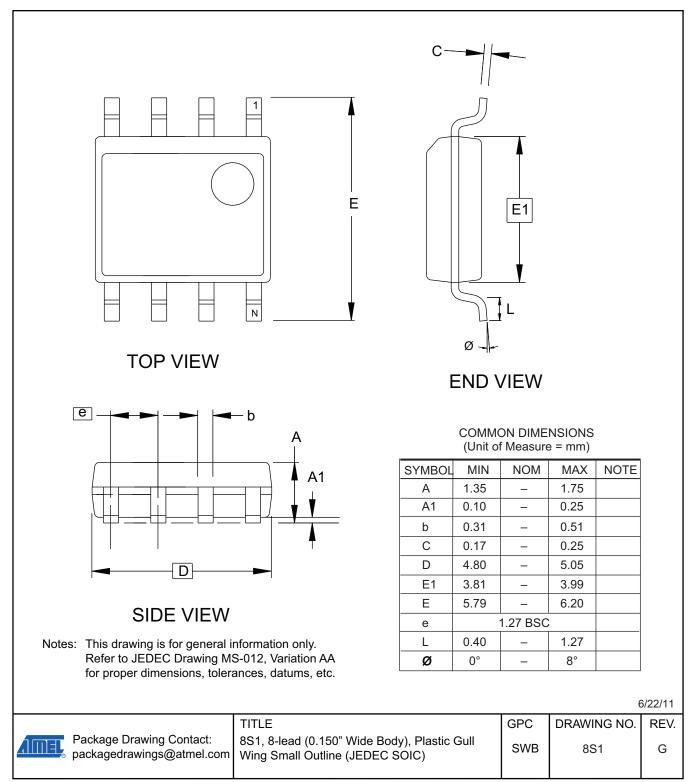
Ordering Code	Voltage	Package	Operation Range
AT24C08C-PUM (Bulk form only)	1.7V to 5.5V	8P3	
AT24C08C-SSHM-B ⁽¹⁾ (NiPdAu Lead Finish)	1.7V to 5.5V	8S1	
AT24C08C-SSHM-T ⁽²⁾ (NiPdAu Lead Finish)	1.7V to 5.5V	8S1	
AT24C08C-XHM-B ⁽¹⁾ (NiPdAu Lead Finish)	1.7V to 5.5V	8X	Lead-free/Halogen-free/ Industrial Temperature
AT24C08C-XHM-T ⁽²⁾ (NiPdAu Lead Finish)	1.7V to 5.5V	8X	(-40°C to 85°C)
AT24C08C-MAHM-T ⁽²⁾ (NiPdAu Lead Finish)	1.7V to 5.5V	8MA2	(
AT24C08C-STUM-T ⁽²⁾	1.7V to 5.5V	5TS1	-
AT24C08C-CUM-T ⁽²⁾	1.7V to 5.5V	8U3-1	
AT24C08C-WWU11 ⁽³⁾	1.7V to 5.5V	Die Sale	Industrial Temperature (–40°C to 85°C)

Atmel AT24C08C Ordering Information

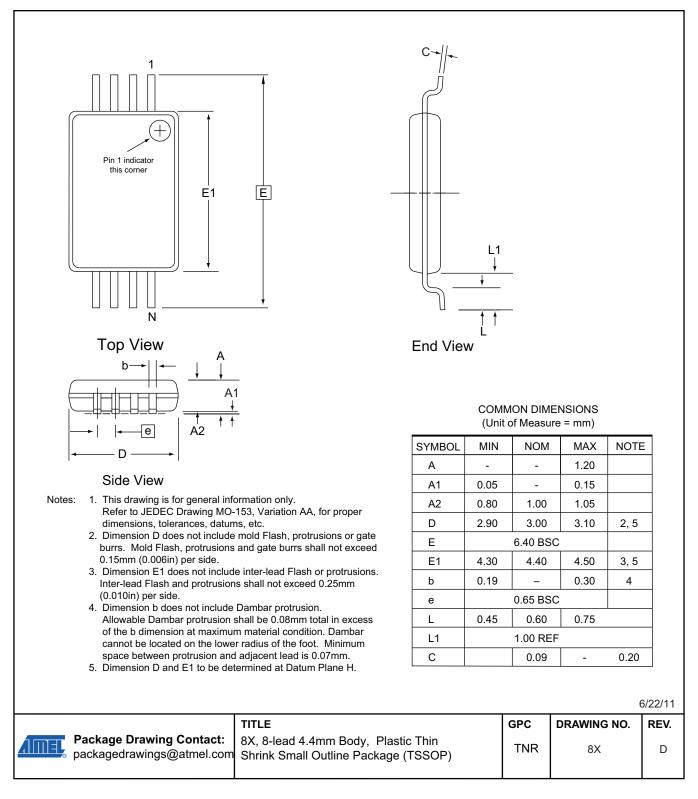
Notes: 1. "-B" denotes bulk

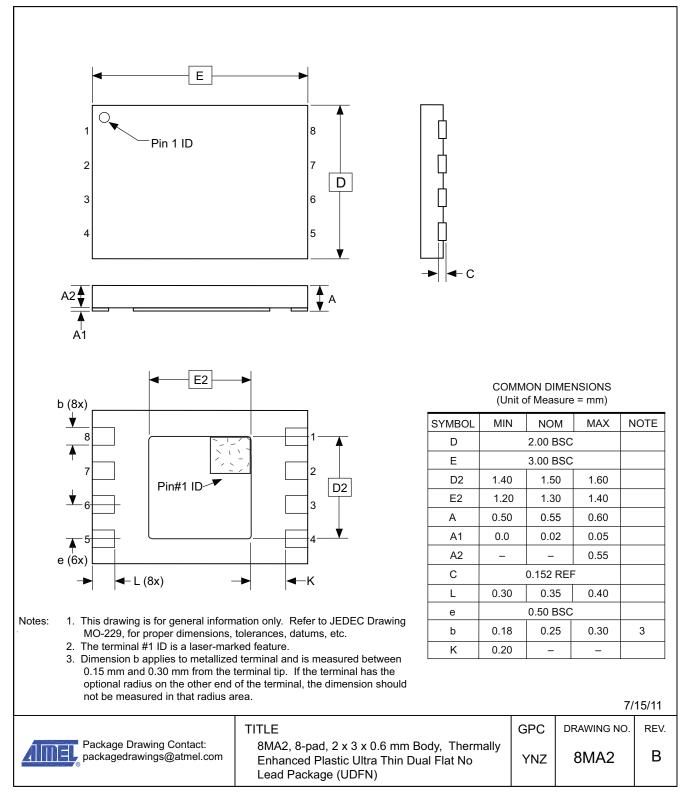
- "-T" denotes tape and reel SOIC = 4K per reel TSSOP, UDFN, SOT23, and VFBGA = 5K per reel
- 3. For Wafer sales, please contact Atmel Sales


Package Type			
8P3	8-lead, 0.300" wide, Plastic Dual Inline (PDIP)		
8S1	8-lead, 0.150" wide, Plastic Gull Wing Small Outline (JEDEC SOIC)		
8X	8-lead, 4.4mm body, Plastic Thin Shrink Small Outline (TSSOP)		
8MA2	8-lead, 2.00mm x 3.00mm body, 0.50mm pitch, Dual No Lead (UDFN)		
5TS1	5-lead, 2.90mm x 1.60mm body, Plastic Thin Shrink Small Outline (SOT23)		
8U3-1	8-ball, die Ball Grid Array (VFBGA)		


12. Packaging Information

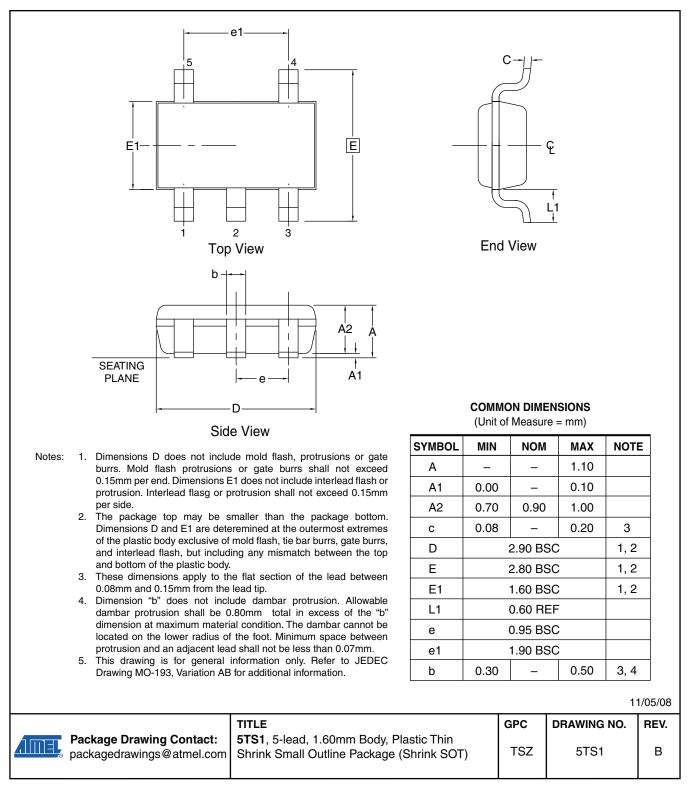
16 Atmel AT24C04C/08C [PRELIMINARY]

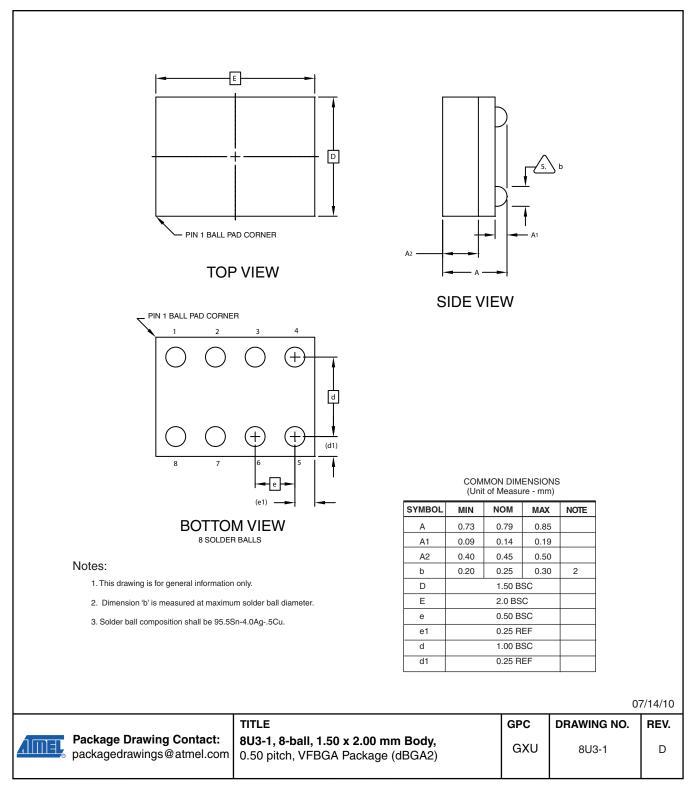

8S1 – JEDEC SOIC



8X – TSSOP

Atmel AT24C04C/08C [PRELIMINARY]


8MA2 - UDFN



5TS1 - SOT23

8U3-1 - VFBGA

13. Revision History

Doc. Rev.	Date	Comments
8787A	10/2011	Initial document release

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 www.atmel.com Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH Business Campus

Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN **Tel:** (+81) (3) 3523-3551 **Fax:** (+81) (3) 3523-7581

© 2011 Atmel Corporation. All rights reserved. / Rev.: 8787A-SEEPR-10/11

Atmel[®], logo and combinations thereof, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.